Calibration of quasi-static aberrations in exoplanet direct-imaging instruments with a Zernike phase-mask sensor

نویسندگان

  • M. N’Diaye
  • K. Dohlen
  • T. Fusco
  • B. Paul
چکیده

Context. Several exoplanet direct-imaging instruments (VLT-SPHERE, Gemini Planet Imager, etc.) will soon be in operation, providing original data for comparative exoplanetary science to the community. To this end, exoplanet imagers use an extreme adaptive optics (XAO) system to correct the atmospheric turbulence and provide a highly corrected beam to a near-infrared (NIR) coronagraph for suppressing diffracted stellar light. The performance of the coronagraph is, however, limited by the non-common path aberrations (NCPA) due to the differential wavefront errors existing between the visible XAO sensing path and the NIR science path and leading to residual speckles that hide the faintest exoplanets in the coronagraphic image. Aims. Accurate calibration of the NCPA in exoplanet imagers is mandatory to correct the residual, quasi-static speckles remaining in the coronagraphic images after XAO correction in order to allow the observation of exoplanets that are at least 106 fainter than their host star. Several approaches have been developed during these past few years to reach this goal. We propose an approach based on the Zernike phase-contrast method operating in the same wavelength as the coronagraph for the measurements of the NCPA between the optical path seen by the visible XAO wavefront sensor and that seen by the NIR coronagraph. Methods. This approach uses a focal plane phase mask of size ∼λ/D, where λ and D denote the wavelength and the telescope aperture diameter, respectively, to measure the quasi-static aberrations in the upstream pupil plane by encoding them into intensity variations in the downstream pupil image. The principle of this approach as described in several classical optical textbooks is simplified by the omission of the spatial variability of the amplitude diffracted by the phase mask. We develop a more rigorous formalism, leading to highly accurate measurement of the NCPA, in a quasi-linear way during the observation. Results. With prospects of achieving subnanometric measurement accuracy with this approach for a static phase map of standard deviation 44 nm rms at λ = 1.625 μm (0.026 λ), we estimate a possible reduction of the NCPA due to chromatic differential optics by a factor ranging from 3 to 10 in the presence of adaptive optics (AO) residuals compared with the expected performance of a typical current-generation system. This would allow a reduction of the level of quasi-static speckles in the detected images by a factor 10 to 100, thus correspondingly improving the capacity to observe exoplanets.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nijboer-Zernike phase retrieval for high contrast imaging

We introduce a novel phase retrieval method for astronomical applications based on the Nijboer-Zernike (NZ) theory of diffraction. We present a generalized NZ phase retrieval process that is not limited to small and symmetric aberrations and can therefore be directly applied to astronomical imaging instruments. We describe a practical demonstration of this novel method that was recently perform...

متن کامل

Speckle noise and dynamic range in coronagraphic images

This paper is concerned with the theoretical properties of high contrast coronagraphic images in the context of exoplanet searches. We derive and analyze the statistical properties of the residual starlight in coronagraphic images, and describe the effect of a coronagraph on the speckle and photon noise. Current observations with coronagraphic instruments have shown that the main limitations to...

متن کامل

Closed-loop aberration correction by use of a modal Zernike wave-front sensor.

We describe the practical implementation of a closed-loop adaptive-optics system incorporating a novel modal wave-front sensor. The sensor consists of a static binary-phase computer-generated holographic element, which generates a pattern of spots in a detector plane. Intensity differences between symmetric pairs of these spots give a direct measure of the Zernike mode amplitudes that are prese...

متن کامل

Image-based calibration of a deformable mirror in wide-field microscopy.

Optical aberrations limit resolution in biological tissues, and their influence is particularly large for promising techniques such as light-sheet microscopy. In principle, image quality might be improved by adaptive optics (AO), in which aberrations are corrected by using a deformable mirror (DM). To implement AO in microscopy, one requires a method to measure wavefront aberrations, but the mo...

متن کامل

Artifact characterization and reduction in scanning X-ray Zernike phase contrast microscopy.

Zernike phase contrast microscopy is a well-established method for imaging specimens with low absorption contrast. It has been successfully implemented in full-field microscopy using visible light and X-rays. In microscopy Cowley's reciprocity principle connects scanning and full-field imaging. Even though the reciprocity in Zernike phase contrast has been discussed by several authors over the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013